Angles between subspaces and their tangents

نویسندگان

  • Peizhen Zhu
  • Andrew V. Knyazev
چکیده

Principal angles between subspaces (PABS) (also called canonical angles) serve as a classical tool in mathematics, statistics, and applications, e.g., data mining. Traditionally, PABS are introduced via their cosines. The cosines and sines of PABS are commonly defined using the singular value decomposition. We utilize the same idea for the tangents, i.e., explicitly construct matrices, such that their singular values are equal to the tangents of PABS, using several approaches: orthonormal and non-orthonormal bases for subspaces, as well as projectors. Such a construction has applications, e.g., in analysis of convergence of subspace iterations for eigenvalue problems. Journal of Numerical Mathematics This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c © Mitsubishi Electric Research Laboratories, Inc., 2013 201 Broadway, Cambridge, Massachusetts 02139 JOURNAL ? (????), 1–15 DOI 10.1515/JOURNAL-????-??? ???? Angles between subspaces and their tangents † Peizhen Zhu and Andrew V. Knyazev Abstract. Principal angles between subspaces (PABS) (also called canonical angles) serve as a classical tool in mathematics, statistics, and applications, e.g., data mining. Traditionally, PABS are introduced via their cosines. The cosines and sines of PABS are commonly defined using the singular value decomposition. We utilize the same idea for the tangents, i.e., explicitly construct matrices, such that their singular values are equal to the tangents of PABS, using several approaches: orthonormal and non-orthonormal bases for subspaces, as well as projectors. Such a construction has applications, e.g., in analysis of convergence of subspace iterations for eigenvalue problems. Principal angles between subspaces (PABS) (also called canonical angles) serve as a classical tool in mathematics, statistics, and applications, e.g., data mining. Traditionally, PABS are introduced via their cosines. The cosines and sines of PABS are commonly defined using the singular value decomposition. We utilize the same idea for the tangents, i.e., explicitly construct matrices, such that their singular values are equal to the tangents of PABS, using several approaches: orthonormal and non-orthonormal bases for subspaces, as well as projectors. Such a construction has applications, e.g., in analysis of convergence of subspace iterations for eigenvalue problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Law of Tangents

Most geometry and pre-calculus books have entire units devoted to learning about two of the most important formulas in mathematics: the law of sines and the law of cosines. Both of these are very useful and very powerful tools, as they can be used to find unknown angles and sides of triangles. Yet, these books rarely devote anything to another formula that is equally powerful and useful: the la...

متن کامل

Some Geometric Properties of Closed Space Curves and Convex Bodies

The main results of the paper are as follows. 1. On each smooth closed oriented curve in Rn, there exist two points the oriented tangents at which form an angle greater than π/2 + sin−1 1 n−1 . 2. If n is odd, then an (n+1)-gon with equal sides and lying in a hyperplane can be inscribed in each smooth closed Jordan curve in Rn. In particular, a rhombus can be inscribed in each closed curve in R...

متن کامل

00 6 Elementary Notions of Lattice Trigonometry

In this paper we study properties of lattice trigonometric functions of lattice angles in lattice geometry. We introduce the definition of sums of lattice angles and establish a necessary and sufficient condition for three angles to be the angles of some lattice triangle in terms of lattice tangents. This condition is a version of the Euclidean condition: three angles are the angles of some tri...

متن کامل

Of Lattice Trigonometry

In this paper we study properties of lattice trigonometric functions of lattice angles in lattice geometry. We introduce the definition of sums of lattice angles and establish a necessary and sufficient condition for three angles to be the angles of some lattice triangle in terms of lattice tangents. This condition is a version of the Euclidean condition: three angles are the angles of some tri...

متن کامل

Examples from the Calculus of Variations Iii. Legendre and Jacobi Conditions

We will deal with a new geometrical interpretation of the classical Legendre and Jacobi conditions: they are represented by the rate and the magnitude of rotation of certain linear subspaces of the tangent space around the tangents to the extremals. (The linear subspaces can be replaced by conical subsets of the tangent space.) This interpretation can be carried over to nondegenerate Lagrange p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Num. Math.

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2013